drgl.net
当前位置:首页 >> x13x22x3x4 >>

x13x22x3x4

[-x1-2x2-6x3+]这个是什么???

[-x1-2x2-6x3+]这个是什么???

解: 增广矩阵 = 1 -3 -2 -1 1 3 -8 -4 -1 0 -2 1 -4 2 1 -1 -2 -6 1 2 r2-3r1,r3+2r1,r4+r1 1 -3 -2 -1 1 0 1 2 2 -3 0 -5 -8 0 3 0 -5 -8 0 3 r4-r3,r3+5r2,r1+3r2 1 0 4 5 -8 0 1 2 2 -3 0 0 2 10 -12 0 0 0 0 0 r1-2r3,r2-r3,r3*(1/2) 1 0 0 ...

增广矩阵 (A,b)= 1 2 -2 1 -1 -1 -3 2 3 4 r2+r1 1 2 -2 1 -1 0 -1 0 4 3 r1+2r2, r2*(-1) 1 0 -2 9 5 0 1 0 -4 -3 所以方程组的通解为 (5,-3,0,0)^T+c1(2,0,1,0)^T+c2(-9,4,0,1)^T

线性代数问题 C*X=D C的秩=2,(C D)的秩大于2时,方程组无解, B不等于4时,(C D)的秩=3,方程组无解; B=4时,方程组有解。通解为:X1=-1-5*X3+8*X4;X2=2+3*X3-5*X4;

{x1 = 0, x2 = x2, x3 = 2*x2, x4 = x2}

x1+2x2+2x3+x4=0 (1) 2x1+x2-2x3-2x4=0 (2) x1-x2-4x3-3x4=0 (3) (2)-(3) x1+2x2+2x3+x4=0 = equation (1) rank of system of equations = 2 (1)+(2) 3x1+3x2+3x4=0 x4=-(x1+x2) from (1) x1+2x2+2x3-(x1+x2)=0 x3 = -x2/2 solution of system o...

∵.A=11111321105433λ 111110?1?2?2?30?1?2?2λ?5 11111012230

对系数增广矩阵,进行初等行变换,得出化简结果 1 2 1 -1 0 3 6 -1 -3 0 5 10 1 -5 0 第2行,第3行, 加上第1行×-3,-5 1 2 1 -1 0 0 0 -4 0 0 0 0 -4 0 0 第1行,第2行, 加上第3行×1/4,-1 1 2 0 -1 0 0 0 0 0 0 0 0 -4 0 0 第3行, 提取公因子-4 1 ...

网站首页 | 网站地图
All rights reserved Powered by www.drgl.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com